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Abstract. Predicting sound wave dispersion in monatomic gases isdafaental gas flow problem in rarefied gas dynamics.
The Navier-Stokes-Fourier model is known to fail where ldksarmodynamic equilibrium breaks down. Attempts to st¢hie
problem are therefore usually based on the Boltzmann esquadienerally, conventional gas flow models involve equatior
mass-density without a dissipative mass contributionhigs paper we observe that using a dissipative mass flux botittn

as a non-local-equilibrium correction can improve praditd of sound wave dispersion when compared with experiahent
data. Two mass dissipation models are investigated: angredry model that simply incorporates a diffusive densityt in

the set of three conservation equations, and another medigked from considering microscopic fluctuations in molacu
spatial distributions.
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INTRODUCTION

A fundamental problem in gas kinetic theory is predicting found wave dispersion in monatomic gases. It is now
well accepted that the Navier-Stokes-Fourier hydrodycamddel performs poorly on this problem in rarefaction
regimes. Most attempts to solve this problem have therdieen based on the Boltzmann kinetic equation and
have not always been successful [1, 2]. From earlier ingastins, various common difficulties have emerged: fitting
experimental data over the full range of flow regime, corfeahulations of the boundary value problem, utilization
of appropriate boundary conditions, and definition of timeetiand length scales involved [1]. Concerning this last
difficulty, three length (time) scales are involved in thessd wave dispersion analysis: the intermolecular mean
free path, the propagating sound wavelength, and the d@pardistance between source and receiver. These three
parameters lead to three different dimensionless quesititWhich of these three quantities are associated with the
Knudsen number depends on the researcher [2]. In the expatidtprotocol of Greenspan [3], varying the Knudsen
number was accomplished by varying the distance betweesailnee and receiver; whereas in the experiments by
Schotter [4], the results are presented with that separdiiiance fixed and the propagating sound wave frequency
varied. Among recent work, Garcia and Siewert provided migaksolutions using five kinetic models: the linearized
Boltzmann equation, BGK model, S Model, Gross-Jackson mdtieRS model, and CES model [5]. Their approach
consisted of a half space bounded by a vibrating plate (thecep modeled as a perfectly diffuse reflection surface.
They compared their results with experimental data by Seht], and a discrepancy at high frequencies has been
mentioned in their analysis [5]. While neither traditiofiaid models nor the Boltzmann ordinary kinetic equation
include dissipative mass, it is shown in this paper that sipligive mass flux improves systematically the agreement
between the continuum model and experimental data for saand propagation.

A SIMPLIFIED MASS DIFFUSION CONTINUUM MODEL

We consider a continuum model consisting of the classicaservation equations of mass, momentum and energy,
but modified by a dissipative density flux:
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where quantitiedy, 1, andq, are all given a Fick’s law diffusive flux representation as:
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In this set of equationg denotes the fluid mass-denstty,the flow unique velocity, and, the fluid local internal
heat energy whilé is the identity matrix. Furthermore, the relation betweemperatureT, and internal energy is
assumed to be given B, = 3/2RT, with R being the specific gas constant, and Boyle’s Law holds faall@ow
properties, i.ep = pRT, with p denoting the pressure. Quantitigg, N andq denote diffusive fluxes in addition to
convective transport fluxes corresponding to mass, momerand energy respectively. These quantities are assumed
to result from the existence of gradients and are modelegithea Fick’s Law type of expression.

Compared with the traditional expression of the continuetro$ conservation equations, a non-vanishing diffusive
term, Jn,, introduced in the mass-density equation marks the onfgrgifice. Setting this term to zero is consistent
with neglecting, locally, gradients in the mass-densitiglfighen expressing the local total mass flux. A non-vanishing
Jm may find an interpretation where local gradients are no Ionggligible, or as a result of fluctuations in molecular
spatial distributions [6]. Although one may expect the &iddal diffusive flux to affect the momentum and energy
equations within a methodical derivation of such a nondl@gpuilibrium continuum model, the above simplified
model is adopted to identify implications of the single gissive term in the mass-density equation for sound wave
dispersion in gases. Diffusive fluxes in equations (4)-&¢ written such that the (constant) transport coefficients
are the mass diffusivity coefficiemt,, the momentum density diffusivity coefficient (or kineneatiscosity)v, the
energy density diffusivity coefficier;,, that in turn define respectively a dynamic viscosity and & kenductivity.
Moreover,n is the bulk viscosity, so thag = 2/3v corresponds to Stokes’s assumption.

Linearized one-dimensional equations

For the sound wave propagation problem the set of equatibnso((6) is considered in a one-dimensional
configuration. An equilibrium ground state defined by the flawiablesp®, T°, p® = Ro°T?, UY = 0, with R the
specific gas constant. Then a perturbation from this grotatd s introduced as follows:
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where the asterisked variables represent dimensionles#ities. Linearizingp = pRT gives p* = p* 4+ T*. The
dimensionless space and time variables are given by,

L
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with T = L/VRTO. Dimensionless linearized equations can therefore beenrit
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where the different dimensionless transport coefficieragasen through:
Vv =LVRTW* Kn=LVRTO;, Kkn=LVRTXK;. (12)
Next we assume the disturbanges T* andU* to be wave functions of the form:
¢" = @y expli (wt” —Kx)], (13)

wherew is the complex wave frequendy,is the complex wave number, agy is the complex amplitude, so that:
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The linearized hydrodynamic set of equations then yielddttmogeneous system,
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The corresponding dispersion relation from the degeneeqyirement is then:
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which can be solved analytically when the three dimensisiieansport coefficients are given by= k;, = K = 1.
This choice, together with Stokes’s assumption for the bidkosityn, is the one giving the best agreement with the
experimental data presented in this paper.

Definitions of dimensionless parameters

The experimental set-up generated plane waves from a tiies(the source), with a fixed frequency, which then
travelled through a gas and were recorded by a receiver [Zh# receiver position and the pressure are the primary
control parameters to vary the rarefaction of the gas codfirdween source and receiver. Standing harmonic waves
are observed during the experiments [4] that suggest thatpgharmonic waves of the form of equation (13) are a
suitable choice from the theoretical point of view. The was characteristic length scales involved in this confitjoma
can therefore be listed as:

- the mean free patfA,, as the distance between two consecutive gaseous moleollisions;
- the separation distance between the source and redeiyver,

- the experimental source sound wave length(or alternatively the frequenay) ;

- the frequency of molecular collisions with boundarigg(or alternatively the distancky);

- the average distance between molecules.

From the above list, we may generate the following list of elisionless parameters:
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FIGURE 1. Normalized inverse phase speed varying with inverse Kmudsenber, as predicted by equation (15).

In various references dealing with sound wave propagatioménatomic gases and comparing these with the
experiments, the dimensionless parameters in expresgiéhdave been treated as Knudsen numbers differently.
ExpressiorKz, which was the Knudsen number in [8], is now called the freqyeatio by more recent researchers
whereas the Knudsen number became inskgadThe form ofK;3 was inferred in [4].

In fact, starting from a harmonic plane wave of the form giireaquation (13), one can show that, for high pressure
and large source-receiver distances, the Knudsen nukabére dimensionless sound wave sp&ednd the damping
coefficient/A can be written (see appendix of [9]):
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These definitions are valid in the hydrodynamic regime, anwdespond to the dimensionless analysis first introduced
by Greespan to examine his experimental data. In contraistpfv pressure and small source-receiver separation
distances, the definitions in equation (17) change to,

M 1\/§Re{K*] B \/E ,
Kn=T" = G=\z3 45 A= 3|m[K]. (18)

In equations (17), the Knudsen number appears as a dimégssamave number (or wave frequency) and the damping
coefficient is a function of the wave frequency. Conversalgquations (18) the Knudsen number now involves the
source-receiver distance, and damping no longer depentfeamave frequency. These two sets of definitions better
encompass the dominant effects of collisions between matde@t high pressure and large source-receiver separation
distances, where boundary effects are negligible, andaherthnt effects of collisions between molecules and segac

at low pressure and small source-receiver separatiomdista

Dispersion and damping compared with experiments

We first compare the sound wave speed and damping predictdut lwiffusive mass-density modified dispersion
relation, equation (15) with the Navier-Stokes-Fourign €0) model, using the hydrodynamic regime definition of
the Knudsen number in equation (17) (so as in GreensparHigires 1 and 2 show, respectively, the inverse phase
speed and damping coefficient varying with inverse Knudsenber, with argon gas experimental data from [10].
It is clear that the diffusive mass-density term introduaesmprovement in the Navier-Stokes-Fourier results. The
previously large discrepancy between experimental andrétieal results is much smaller in the modified model.
Broadly, both damping and speed agree with experimentsimtellthe transition regime, up tdn =~ 3. The pure
Navier-Stokes-Fourier model fails Kj ~ 0.2 on damping.

A VOLUME KINETIC MODEL FOR DISSIPATIVE MASS CONTRIBUTIONS

A volume kinetic approach was introduced in [6] where thecet of mass-density, defined as some amount of
mass divided by a certain quantifiable volume, is given aedhifit molecular level representation. This resulted in a
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FIGURE 2. Normalized damping coefficient varying with inverse Knuadsember, as predicted by equation (15).

set of continuum fluid equations where the continuity equmatvas an expression of probability conservation and is
separated from an evolution equation of the fluid mass-te@at mass-density evolution equation encompasses
fluctuations in molecular spatial distribution, and invedwa dissipative mass-density and a certain volume praducti
term. In a one dimensional configuration, the dimensiorfl@ss of this model is given by [9]:

Continuity
oA, oJU*
o T ax © (19)
Mass-density
(1= X) Jr — Kooz + (0" —X") 3 2 o+ (B —y) 5oy =0, (20)
Momentum
ou* 4 _9°U* IA, oT* 4 , . 9%
ot 3H w7 Tax Tax M K3 =0 @)
Energy
oT* 20U* 2 L0°T* 5 09%p*
gt T3ax 3wz T3k = (22)

In these equationg, describes the probability of the presence of a gaseous miel@t a certain spatial region.
Coefficientsa and 3 are first and second gas thermal expansion coefficientsewhénd y are first and second
compressibility coefficients. These coefficients are imgdlin the description of the volume production term within
the mass-density equation. Dynamic viscosity is dengteaind other variables have their meaning as defined in the
previous sections above.

Using a monatomic gas Prandtl number, and some combinatibtise various expansion and compressibility
coefficients, the wave speed predicted by equations (192pfits, in all regimes, the argon gas experimental data
from [10] (see figure 3). Regarding the damping coefficieritt whe hydrodynamic regime definition of the Knudsen
number, agreement with experimental data is obtained upKawisen number of about 1; conversely, using the
rarefaction regime definition, good agreement is obtaindigier Knudsen numbers (seen in figure 4).

CONCLUSION

Dissipative mass/density in classical hydrodynamicshwotal energy and entropy given local-equilibrium expres-
sions and the Gibbs relation, have been considered in [1d ttzen authors have shown that they are incompatible;
particularly with respect to some properties, such as amguabmentum conservation. However, a dissipative mass
flux reflects non-local equilibrium behaviour that the leeglilibrium foundations of classical hydrodynamics con-
sider to be negligible when defining local thermodynamidalaes. It is known that in strong disequilibrium, local
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FIGURE 3. Normalized inverse phase speed varying with inverse Knudsenber, as predicted by the volume kinetic model for
dissipative mass contributions
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FIGURE 4. Normalized damping coefficient varying with inverse Knutseimber, as predicted by the volume kinetic model
for dissipative mass contributions

total energy and entropy may have different expressior@ving gradients [12]. Moreover, the local ‘volume’ con-
taining the material under investigation is usually not trmred as a variable when one derives local momentum
conservation in the classical sense of Newton’s Laws of dyos Derivation of a dissipative mass model for fluids,
as well as assessing its thermodynamic consistency, aefdhe still very open questions. In any case, as experimen-
tal evidence is more credible than theoretical argumehits atrticle has been concerned with evaluating the effect of
including a mass-diffusion term on an unsolved problem oisbwave propagation in rarefied gases; here we have
shown it to have positive impact. Future work will includeéstigating the ability of the mass-diffusion component
to handle other problematic rarefied flow configurations.
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